
Evaluate Network Security and Measure
Performance of Self Healing in 5G

1Haripriya N 2Sangeethalakshmi G
Department of Computer Science, DKM College for Women, Vellore, Tamil Nadu, INDIA

Abstract – A Network administrator must operate and
maintain secure communication. A new technique in
networking is SDN, it separates data plane and control plane,
making network switches in the data plane simple packet
forwarding devices and control plane it able to monitor and
control entire network behaviours. . Using Self Healing we
focus on SDN network in that technologies we describe enable
network operators to implement a wide range of network
policies in a high-level policy language and easily determine
sources of performance problems. In Existing work, focused
on metrics that measure the availability of the services,
network functions, and resources (physical and logical)
involved in the delivery of those services over 5G SDN-based
networks. Our work focusing on transmission losses, in
existing all works not focus on file transmission losses or
packet losses , so we use divide and conquer method, it’s able
to reduce the number transmission losses and balance the
network traffic load throughout network and protect network
against eavesdroppers.

Index terms: SDN, self healing, network security, Dynamic
routing

1.INTRODUCTION

Software Defined Networking (SDN) has emerged as a
promising approach for designing future software
ecosystems that benefit from and accommodate variability
and uncertainty. SDN has, so far, mostly focussed on
management and on devising interaction frameworks and
APIs to facilitate management of physical components of
the network. Less attention has been devoted to meeting
high-level application goals such as fault-tolerance and
performance guarantees. These however, are becoming
increasingly important given growing prevalence of SDN
deployments in large-scale and heterogeneous settings
involving large numbers of failure-prone components (such
as e.g., data centres and clouds). For example, in a fat tree
topology employed in Google data centres, switches are
organised into redundantly connected hierarchies with low-
end commodity switches placed at the leaves, and high-end
switches populating the higher levels of the hierarchy. In
fact, [1] identified improving robustness of SDNs as the
next most important task to be addressed by the SDN
research. In this paper, we propose a research program
aimed at enabling fully autonomous real-time management
of SDN enabled networks in the face of failures and load
fluctuations. The main idea underlying our proposal is to
leverage self-healing (SH) paradigm as an approach for
boosting the SDN robustness and predictability.
The significant compromise to the robustness of any self-
healing wireless network versus a wired network, or a
centralized wireless network, is the increased latency and
loss of throughput to the overhead costs of network

maintenance and the inherent costs of store-and-forward
messaging. To recover some of that lost network
performance, developers need to focus on designing
extremely efficient applications--those that take advantage
of the processing power available in wirelessly enabled
endpoints and that tailor the transport layer of the network
to the needs of the particular application. This results in the
need to do more careful code building and can mean a
steeper learning curve for those wanting to use self-healing
technologies. Ultimately, however, the results will be a
proliferation of low-power, low-latency, highly scalable
applications that will transform the technology landscape
yet again.
Network application design--particularly the design of the
"simple" applications most likely to run on severely
resource-constrained hardware--often exhibits an
unfortunate inertia. In the earliest days of embedded digital
networks, developers used bus-sharing strategies such as
query-response and token-passing to control traffic.
Perhaps by habit, some developers try to employ these
strategies even when a viable MAC layer is in place.
Unfortunately, this redundant traffic control adds overhead
and reduces network capacity; when the selection of a self-
healing network is already squeezing network capacity,
developers designing these networks should question the
need to directly control access to it. These kinds of trade-
off choices are the hallmark of design for self-healing
networks.
One especially useful strategy for avoiding unnecessary
overhead is to decentralize tasks within the network.
Digital communications assume some degree of processing
power at each node, and using that power to handle tasks in
a distributed way often requires no hardware changes.
Some types of processing are cheaper than sending data in
self-healing networks--even the simplest devices can
compare data against thresholds, so it is possible to limit
messaging to cases where there is something interesting to
say. Rather than a periodic temperature report, for example,
a temperature-sensing device can be programmed to report
"exceptions," conditions under which the temperature falls
outside a prescribed range. This kind of exception-based or
"push" messaging can greatly reduce traffic in a network,
leaving more capacity for communication. Depending on
the amount of processing power available at the endpoint
and the complexity of the application, a significant portion
of the data processing and analysis needed for an
application can be done before the data ever leaves the
endpoint. Developers need to evaluate their applications
carefully to discover how useful this strategy will be for
them.

Haripriya N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3865-3870

www.ijcsit.com 3865

Developers encounter another challenge at the point where
data leaves the endpoint. In extremely resource-constrained
applications, using extraordinary methods may be
necessary to satisfy application specifications. As a
concrete example, consider the conscious relaxation of
encapsulation in the classical Open System Interconnection
(OSI) model in a network using dynamic route selection.
Developers need to ask, "Is pure separation of layers
appropriate here?"
According to good programming practice and the OSI
model, developers should encapsulate routing tasks in the
network layer and transmission and reception tasks in the
physical layer. Any interaction between these layers should
be indirect and mediated by the network layer.
Unfortunately, efficient dynamic route selection often
depends upon immediate access to physical data such as
signal strength or correlate error rate.
In this case, performance can suffer if there are artificial
barriers to this interaction. Ultimately, this suggests that the
OSI networking model may need to change to suit the
characteristics of these new networks, whose importance is
growing all the time and should not be underestimated.

2. LITERATURE SURVEY

Existing cellular networks suffer from inflexible and
expensive equipment, complex control-plane protocols, and
vendor-specific configuration interfaces. In this position
paper[30], we argue that software defined networking
(SDN) can simplify the design and management of cellular
data networks, while enabling new services. However,
supporting many subscribers, frequent mobility, fine-
grained measurement and control, and real-time adaptation
introduces new scalability challenges that future SDN
architectures should address [30]. As a first step, we
propose extensions to controller platforms, switches, and
base stations to enable controller applications to (i) express
high-level policies based on subscriber attributes, rather
than addresses and locations, (ii) apply real-time, fine-
grained control through local agents on the switches,
(iii)perform deep packet inspection and header compression
on packets, and (iv)remotely manage shares of base-station
resources.
Programmable networks brought by Software Defined
Networks (SDN)[29] are perceived by operators as
cornerstone to reduce the time to deploy new services, to
augment the flexibility and to adapt network resources to
customer needs at runtime. However, despite the
vulnerabilities identified due to the centralization of the
intelligence on SDN, its research is more cantered on
forwarding traffic and reconfiguration issues, not
considering to a great extent the fault management aspects
of the control plane.
 The aim of this paper is to provide SDN[29] with fault
management capabilities by using autonomic principles like
self-healing mechanisms. We propose a generic self-
healing approach that relies on a Bayesian Networks for the
diagnosis block and it is applied to a centralized SDN
infrastructure to demonstrate its functioning in the presence
of faults.

3. RELATED WORKS
Security & Dependability in SDN
To the best of our knowledge, none of the SDN controllers
proposed thus far address security and dependability
beyond using simple authenticated communication
channels and control data replication among controller
instances. For example, no mechanisms are used to assure
trusted switch controller association (to avoid malicious
devices in the network) or to detect, correct or mask faults
of system components. Moreover, no techniques are used to
assure data integrity and confidentiality in or between
controllers.
In a security and dependability perspective, one of the key
ingredients to guarantee a highly robust system is fault and
intrusion tolerance. The two main fault models are crash
and Byzantine (a.k.a., arbitrary faults). Crash fault tolerant
services support only benign failures such as a crashed
process, operating system or machine, being a narrow
subset of the arbitrary model. Byzantine fault tolerant
(BFT) systems are capable of tolerating any abnormal
behavior, i.e., intentional or non-intentional faults, while
the service keeps its correct operation. Faults (e.g., bugs,
mis configurations, attacks) and errors can be masked
automatically as they happen, by using state machine
replication [17]. Furthermore, in order to ensure the
perpetual and unattended operation of the system, errors
can be removed with self healing techniques [18], so that
there is never an excessive number of a compromised
device. Both automatic recovery and perpetual and
unattended operation seem to be relevant objectives in the
context of SDNs.
The literature on Byzantine fault tolerance is broad, ranging
from large-scale systems [19, 20] to resource-efficient
solutions [19, 21, 22]. Nevertheless, BFT alone is not
enough to guarantee a highly available dependable system,
needing self-healing mechanisms as a complement.
Techniques such as proactive-reactive recovery [18], for
example, can be used to assure the system liveness. These
techniques rely on the idea of rejuvenating compromised
components (be it by accidental or malicious faults).
Intrusion-tolerant architectures [23] are a step in the
direction of this automatic security paradigm. Intrusion-
tolerant systems remain working correctly and are capable
of assuring properties such as integrity, confidentiality and
availability, despite the presence of faulty or compromised
components due to successful attacks.
A secure and dependable control plane helps improve the
overall network resilience [24], which is our final goal. A
resilient system is one that self-adapts to the dynamics of
environment conditions, e.g., one that performs self-healing
in the presence of persistent threats and where protection
parameters, such as number of replicas, length of keys, etc.,
can automatically increase in case of a severe attack.
Secure and Dependable Control Platform
In this section we present the general design of the secure
and dependable SDN control platform we propose. Figure 2
illustrates a simplified view of the architecture. In the
remainder of this section we briefly introduce and discuss
the several mechanisms which we consider using to address
the threat vectors identified in SDNs.

Haripriya N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3865-3870

www.ijcsit.com 3866

Replication. One of the most important techniques to
improve the dependability of the system is replication. As
can be seen in figure 2, our controller is replicated, with
three instances in the example. Applications should be
replicated as well. Besides replicated instances of the
controller, in the figure we can observe application B also
replicated in all controller instances. This mixed approach
ensures tolerance of both hardware and software faults,
accidental or malicious.
Replication makes it possible to mask failures and to isolate
malicious or faulty applications and/or controllers.
Moreover, in case of a network partition, application B,
with the proper consistency algorithms, will still be able to
program all network switches, contrary to application A.
Diversity.
Another relevant technique to improve the robustness of
secure and dependable systems is diversity [25, 26].
Replication with diverse controllers is a good starting case.
The basic principle behind this mechanism is to avoid
common-mode faults (e.g., software bugs or
vulnerabilities). For example, it is known that off-the-shelf
operating systems, from different families, have few
intersecting vulnerabilities [26], which means that OS
diversity constrains the overall effect of attacks on common
vulnerabilities. In SDNs the same management application
could run on different controllers. This can be simplified by
defining a common abstraction for applications (a
northbound API).

Self-healing mechanisms.
Under persistent adversary circumstances, proactive and
reactive recovery can bring the system back to a healthy
state, replacing compromised components, and keep it
working virtually forever. When replacing components, it
is important that the replacement be done with new and
diverse versions of the components, whenever possible. In
other words, we should explore diversity in the recovery
process, strengthening the defense against attacks targeting
specific vulnerabilities in a system.
Dynamic device association.
If a switch is associated with a single controller, its control
plane does not tolerate faults. Once the controller fails, the

control operation of the switch fails and the switch will
need to associate with another controller. For this reason, a
switch should be able to dynamically associate with several
controllers in a secure way (e.g., by using threshold
cryptography to detect malicious controllers and
authentication, which would hinder man-in-the-middle
attacks, for instance). A switch associated with different
controllers would be able to automatically tolerate faults
(crash or Byzantine, depending on the configuration). Other
advantages include increasing control plane throughput
(several controllers could be used for load balancing) and
reducing control delay [27] by choosing the quickest-
responding controller. Increasing the data plane
programmability (near or in the network switches) would
be helpful in this respect. Two approaches could be used
for this purpose. One option would be to use general
purpose CPUs inside the switch to replace some of the
traditional functionality of custom ASIC, as in [28].
Another could be to have a proxy element acting on behalf
of the switch. This element could be easily deployed
in a small black box attached to the switch, with a general
purpose micro-computer.
Trust between devices and controllers.
Establishing trust between devices and controllers is an
important requirement for overall control plane
trustworthiness. Network devices should be allowed to
associate with controllers dynamically but without
incurring in less reliable relationships. A simple approach
would be to have authenticated white lists of known trusted
devices, kept at controllers. However, this lacks the
flexibility desired in a SDN. Another option is therefore to
trust all switches until its trustworthiness is questioned.
Malicious or abnormal behaviour could be reported by
other switches or controllers, based on anomaly or failure
detection algorithms. Once the trustworthiness of a switch
or a controller would go below an accepted threshold, the
switch would be automatically quarantined by all devices
and controllers.
Trust between applications and controllers software.
As software components present changing behaviour due to
aging, exhaustion, bugs, or attacks, a dynamic trust model
as the one proposed in [12] is required. In this paper the
authors propose and demonstrate the feasibility of a model
to support autonomic trust management in component-
based software systems. They use a holistic notion of trust
to allow a trust or to assess the trustworthiness of the
trustee by observing its behaviour and measuring it based
on quality attributes, such as availability, reliability,
integrity, safety, maintainability, and confidentiality. The
proposed model can also be applied to define, monitor, and
ensure the trustworthiness of relationships among system
entities.
3. 1 Existing System
In existing work, they analyzed the vulnerabilities of SDN
(Software-Defined Networks) and NFV (Network Function
Virtualization) from a fault management perspective, while
taking into account the autonomic principles. In particular,
we focus on resiliency and we propose a Self-Healing
based framework for 5G networks to ensure services and
resources availability. In Existing work, focused on

Haripriya N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3865-3870

www.ijcsit.com 3867

metrics that measure the availability of the services,
network functions, and resources (physical and logical)
involved in the delivery of those services over 5G SDN-
based networks.

4. PROBLEM STATEMENT
Now a day’s network administrator fails to provide a secure
communication, and present more privacy breaches
because presence of eavesdroppers and dos attacks, we aim
to protect SDN network and also reduce bandwidth usages,
transmission failures. Main advantages of SDN able to
control entire network behaviors, because it separates to
plane one is data plane and another one is control plane.

5. PROPOSED SYSTEM
Our work focused transmission losses, in existing work not
focused on file transmission losses, we using divide and
conquer technique can reduce the number of data
transmission and balance the traffic load throughout
network and protect network against eavesdroppers. In
general, the majority of network communications occur in
an unsecured or "cleartext" format, which allows an
attacker who has gained access to data paths in your
network to "listen in" or interpret (read) the traffic. When
an attacker is eavesdropping on your communications, it is
referred to as sniffing or snooping. The ability of an
eavesdropper to monitor the network is generally the
biggest security problem that administrators face in an
enterprise. Without strong encryption services that are
based on cryptography, your data can be read by others as it
traverses the network.

6. IMPLEMENTATION

Module list
 Software defined network
 Network security
 Dynamic routing
 Self-healing performance management in SDN
networks

6.1Module description:
6.1.1Software defined network
Software defined network is an approach to computer
networking that allows network administrators to manage
network services through abstraction of lower-level
functionality. This is done by decoupling the system that
makes decisions about where traffic is sent (the control
plane) from the underlying systems that forward traffic to

the selected destination (the data plane). The inventors and
vendors of these systems claim that this simplifies
networking.
6.1.2 Network security
To evaluate the security metrics based on intermediate node
performances, we evaluate node performances following
factors, time delay, packet dropping or transmission loss
this factor all considered during evaluate node
performances.
6.1.3 Dynamic routing
Rather than ignoring the broadcast nature of the wireless
medium, dynamic routing takes advantage of it. Messages
are broadcast to all neighbors and forwarded according to a
"cost-to-destination" scheme. Messages act as multiple
objects rolling downhill toward their ultimate destination.
Although this type of routing takes advantage of multiple
redundant routes from originator to destination, it can also
generate a lot of traffic on the network. Without
modification, it can result in messages traveling in endless
loops, jamming up the network.
6.1.4 Self-healing performance management in SDN
networks
We further propose to extend the basic self-healing
paradigm with new techniques capable of reconfiguring
routing networks so as to handle component failures as well
as congested links and overloaded switches. These
techniques will leverage the SDN control plane to gather
live load information from network switches and to inject
necessary reconfiguration actions.

6.1.4. Above figure is Normal Network vs SDN

Table

7. DIVIDE-AND-CONQUER
In computer science, divide and conquer (D&C) is an
algorithm design paradigm based on multi-branched
recursion. A divide and conquer algorithm works by
recursively breaking down a problem into two or more sub-
problems of the same (or related) type, until these become
simple enough to be solved directly. The solutions to the
sub-problems are then combined to give a solution to the
original problem.

Haripriya N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3865-3870

www.ijcsit.com 3868

This technique is the basis of efficient algorithms for all
kinds of problems, such as sorting (e.g., quicksort, merge
sort), multiplying large numbers (e.g. Karatsuba), syntactic
analysis (e.g., top-down parsers), and computing the
discrete Fourier transform (FFTs).
On the other hand, the ability to understand and design
D&C algorithms is a skill that takes time to master. As
when proving a theorem by induction, it is often necessary
to replace the original problem by a more general or
complicated problem in order to initialize the recursion,
and there is no systematic method for finding the proper
generalization. These D&C complications are seen when
optimizing the calculation of a Fibonacci number with
efficient double recursion.
The correctness of a divide and conquer algorithm is
usually proved by mathematical induction, and its
computational cost is often determined by solving
recurrence relations.
Definition
Divide & conquer is a general algorithm design strategy
with a general plan as follows
1. DIVIDE
A problem’s instance is divided into several smaller
instances of the same.Problem, ideally of about the same
size.
2. RECUR:
Solve the sub-problem recursively.
3. CONQUER:
If necessary, the solutions obtained for the smaller
instances are combined to get a Solution to the original
instance.
Diagram 1 shows the general divide & conquer plan

Note
 The base case for the recursion is sub-problem of constant
 size.

Advantages of Divide & Conquer technique
• For solving conceptually difficult problems like Tower of

Hanoi, divide &conquer is a powerful tool.
• Results in efficient algorithms.
• Divide & Conquer algorithms are adapted foe execution

in multi-processor machines.
• Results in algorithms that use memory cache efficiently.

Limitations of divide & conquer technique
• Recursion is slow
• Very simple problem may be more complicated than an

iterative approach. Example: adding n numbers etc

8. CONCLUSION
Configuring computer networks is becoming increasingly
vexing as network operators must perform increasingly
sophisticated network management tasks. Our work
focused against eavesdroppers and also transmission loss
because now a day’s major concern in any network
management is to provide a secure communication, so we
proposed a model using divide and conquer technique can
reduce the number of data transmission and balance the
traffic load throughout network and protect network against
dos attack.

REFERENCES
[1] T. Koponen et al. “Onix: a distributed control platform for large-

scale production networks”. In: OSDI. 2010.
[2] N. Gude et al. “NOX: towards an operating system for networks”.

In: Comp. Comm. Rev. (2008).
[3] M. Caesar et al. “Design and implementation of a routing control

platform”. In: NSDI. 2005.
[4] M. Casado et al. “Rethinking Enterprise Network Control”. In:

IEEE/ACM Trans. on Networking 17.4 (2009).
[5] P. Porras et al. “A security enforcement kernel for OpenFlow

networks”. In: HotSDN. ACM, 2012.
[6] S. Shin et al. “FRESCO: Modular Composable Security Services for

Software-Defined Networks”. In: Internet Society NDSS. 2013.
[7] N. McKeown et al. “OpenFlow: enabling innovation in campus

networks”. In: Comput. Commun. Rev. (2008).
[8] S. Sorensen. Security implications of software-defined networks.

2012. url: http://goo.gl/BiXH2.
[9] S. M. Kerner. Is SDN Secure? 2013. url: http : / / goo.gl/lPn2V.
[10] D. Kushner. The Real Story of Stuxnet. 2013. url:

http://goo.gl/HIEHQ.
[11] C. Tankard. “Advanced Persistent threats and how to monitor and

deter them”. In: Network Security (2011).
[12] Z. Yan and C. Prehofer. “Autonomic Trust Management for a

Component-Based Software System”. In: IEEE Trans. on Dep. and
Sec. Computing 8.6 (2011).

[13] R. Holz et al. “X.509 Forensics: Detecting and Localising the
SSL/TLS Men-in-the-Middle”. In: Computer Security. LNCS. 2012.

[14] M. Georgiev et al. “The most dangerous code in the world:
validating SSL certificates in non-browser software”. In: ACM CCS.
2012.

[15] R. Sherwood et al. FlowVisor: A Network Virtualization Layer.
Tech. rep. Deutsche Telekom Inc. R&D Lab, Stanford University,
Nicira Networks, 2009.

[16] Y. G. Desmedt. “Threshold cryptography”. In: European
Transactions on Telecommunications 5.4 (1994).

[17] F. B. Schneider. “Implementing fault-tolerant services using the state
machine approach: a tutorial”. In: ACM Comput. Surv. 22.4 (Dec.
1990).

[18] P. Sousa et al. “Highly Available Intrusion-Tolerant Services with
Proactive-Reactive Recovery”. In: IEEE Trans. Parallel Distrib. Syst.
21.4 (2010).

[19] G. Veronese et al. “Efficient Byzantine Fault-Tolerance”. In: IEEE
Trans. on Computers 62.1 (2013).

[20] G. Veronese et al. “EBAWA: Efficient Byzantine Agreement for
Wide-Area Networks”. In: IEEE HASE. 2010.

[21] R. Kapitza et al. “CheapBFT: resource-efficient byzantine fault
tolerance”. In: 7th ACM EuroSys. 2012.

[22] J. Hendricks, G. R. Ganger, and M. K. Reiter. “Lowoverhead
byzantine fault-tolerant storage”. In: SIGOPS Oper. Syst. Rev. 41.6
(Oct. 2007).

[23] P. Verissimo et al. “Intrusion-tolerant middleware: the road to
automatic security”. In: IEEE Security & Privacy 4.4 (2006).

Haripriya N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3865-3870

www.ijcsit.com 3869

[24] J. Korniak. “The GMPLS Controlled Optical Networks as Industry
Communication Platform”. In: IEEE Trans. on Industrial Informatics
7.4 (2011).

[25] S. Neti, A. Somayaji, and M. E. Locasto. “Software diversity:
Security, Entropy and Game Theory”. In: 7th USENIX HotSec.
2012.

[26] M. Garcia et al. “Analysis of operating system diversity for intrusion
tolerance”. In: Software: Practice and Experience (2013).

[27] B. Heller, R. Sherwood, and N. McKeown. “The controller
placement problem”. In: HotSDN. ACM, 2012.

[28] J. C. Mogul and P. Congdon. “Hey, you darned counters!: get off my
ASIC!” In: HotSDN. ACM, 2012.

[29] J. Sanchez, I. Grida Ben Yahia, N. Crespi, Self-healing Mechanisms
for Software Defined Networksǁ. AIMS 2014.

[30] Xin Jin et al., ―CellSDN: Software-Defined Cellular Core
Networks

AUTHORS
Haripriya N is a Research Scholar in the Department of Computer

Science at DKM College for Women, Vellore pursuing M.Phil
in Thiruvalluvar University, Vellore. Her special research
interests are in Computer Networks and Database Management
Systems. She completed her Masters in Computer Applications
from C.Abdul Hakeem College of Engineering and
Technology, Visharam, Vellore.

Prof. Sangeethalakshmi G is an Assistant Professor in Department of
Computer Science at DKM College for Women. She has a vast
experience of around 12 years in Teaching. Her areas of
interest are Microprocessor and Computer Architecture.

Prof.Sivasankari A is the Head of the Department at DKM College of
Women. She has a deep knowledge in the field of computers.
Her interests are in DBMS, Network Security, Multimedia,
Java, VC++ and Microprocessor.

Haripriya N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3865-3870

www.ijcsit.com 3870

